Moving from "LID" to "Green Infrastructure:" Looking beyond Qp Mitigation & Volume Reduction

Bill Hunt, Ph.D., PE, D.WRE

Professor, Extension Specialist, & University Faculty Scholar

North Carolina State University

My Motivation

Acknowledgements

- Dr. Trisha L.C. Moore, former PhD student
 - Research Associate,
 University of Minnesota
- Ms. Natalie Bouchard, former MS student
 - Project Engineer, Altamonte
 Environmental

We "know" LID (OK, we don't)

- Applied on a broad scale, LID can maintain or restore a watershed's hydrologic and ecological functions.
 - USEPA, http://water.epa.gov/polwaste/green/

Hydrologic Cycle Under Natural Conditions

Median Flow Rates per Watershed HA

LID SCMs – "Bring Back" Hydrology

Peak Flows Can be Mitigated

Date/Time

Hunt et al. 2008. JEE. - April

Mass Loads (kg/ha/yr)

	СР		SS	
	In	Out	In	Out
TSS	1190	37	570	38
Chromium	0.09	0.015	0.02	~0.007
Copper	0.26	0.073	0.12	0.045
Lead	0.09	0.013	0.03	~0.005
Zinc	1.0	0.063	0.36	0.017
Chloride	6800	458	320	25
TN	27	7.2	9.6	3.6
Nitrate	12	2.5	3.7	~0.19
TKN	15	4.1	6.0	3.6
TP	3.6	0.72	0.9	0.38
TOC	44	154	43	78

Li & Davis, J. Env. Eng. 2009

Ephemera Guttulata (mayfly), Litobrancha recurvata (mayfly) Excellent Very sensitive Drunella allegheniensis (mayfly), Rhyacophila fuscula (caddisfly Good Sensitive

Semi-tolerant Amnicola (snail), Elliptio complanata (mussel)

Good-Fair Fair Tolerant Cambarus (crayfish), Crangonyx (crustacean)

Enchytraeidae (worm), Limnodrilus cervix (worm) Poor Very tolerant

Piedmont

		Const	PIEDMONT Constituent concentration (mg/L)				
R	Rating	DO	TSS	TN	TP	00mL)	
	E	9.25	4.00	0.69	0.06	1	
l	G	8.80	6.40	0.99	0.11		
_	GF	8.40	5.00	1.17	0.13	г	
	F	7.70	7.00	2.16	0.22	ı	
	P	6.80	5.00	7.59	0.63]	

Effluent TP concentration Exceedance Probability Plot

McNett et al. 2011

But, what else do we "get?"

Permeable Pavement: You can park on it!

Green Roofs

- Reduction of Heat Island
- Increased Roof Life
- New Living Space
- Increase property value
- They're pretty
- They can save the world

Safety Benefits?

Rainwater Harvesting: Drink it Baby!

Roadside SCMs

- **Vegetated Filter Strips (VFS)**
- **Swales**
- **Wet Swales**

Results – At what rate do Piedmont VFS/VSs sequester carbon?

Wetland Swale vs. Dry Swale

Results - Does swale type affect % Total C?

Roadside Data

Turfgrass

Native Grassland

Roadside Environment

And what about Complete Carbon Budgets?

Methods

• SCMs considered:

Level spreader - filter strip

Methods

• SCMs considered:

Methods

• SCMs/ Conveyances considered:

Conceptual model

Results – Embodied & Construction C

Results – Maintenance & Sequestration

SCM Type	Maintenance emissions (g C m ⁻² yr ⁻¹)	C sequestration (kg C m ⁻² yr ⁻¹)	Net (kg C m ⁻² yr ⁻¹)
Green roof	0.02	0.076ª	0
Perm. Pavement	0.01	0	0.01
Sand filter	0.98	0	0.98
Bioretention cell	0.15	0.09 ^b	0.06 ^b
Rainwater harvesting	0.17	0	0.17
Wetland	0.07	0.12	-0.05
Level spreader – VFS	0.02	0.06	-0.04
Pond	0.28	0.1	0.18

^agreen roof sequestration rate sustained 2 years (Getter & Rowe, 2009)

^bsequestration rate variable; 0.09 kg C m⁻² yr⁻¹ is average

Results – Net footprint with time

SF 250 Net C Footprint (kg C m⁻²) 150 **RWH** 50 20 **BRC** 15 GR 10 PP 5 Pond 0 30 **50** CSW 10 20 40 -5 Time (years) -10

Informing Designs of SCMs

2. Ecosystem service assessment: Ponds vs CSWs

Results – carbon sequestration

Add aquatic shelves?

Other Ecosystem Services

Biodiversity assessment

Vegetation surveys of OW, SW, and TI zones

H₀₃: pond and CSW vegetation diversity is no different

H₀₄: pond and CSW macroinvertebrate diversity is no different

Ecosystem Service Assessment Methods

• Cultural services: do ponds and wetlands provide similar recreational and educational opportunities?

South Central LA Wetland Park

Watauga County (NC) Wetland

Sometimes we nail it with ponds!

Recreation survey: stormwater wetlands vs. ponds

Check out this Infiltration Basin

Cultural services:

Education/scientific research

Smithfield-Selma Sr. High School Stormwater Wetland: Smithfield, NC Photo courtesy of NCSU-BAE

Education survey: stormwater wetlands vs. ponds

Take Home Points

- The "Move" from LID to Green Infrastructure will...
 - Require holistic evaluation
- Valuation of non-traditional goals may become important
- Differences are observed among SCMs wrt Ecosystem Services delivered
- Valuation of Ecosystem Services will need to become necessary to "see this."

Questions?

